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Abstract.

We consider the problem of solving a linear system Ax = b when ,4 is nearly symmetric and when

the system is preconditioned by a symmetric positive definite matrix M. In the symmetric case, one

can recover symmetry by using M-inner products in the conjugate gradient {CG) algorithm. This

idea can also be used in the nonsymmetric case, and near symmetry can be preserved similarly. Like

CG, the new algorithms are mathematically equivalent to split preconditioning, but do not require

M to be factored. Better robustness in a specific sense can also be observed. When combined with

truncated versions of iterative methods, tests show that, this is more effective than the common practice

of forfeiting near-symmetry altogether.
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Abstract

We consider the problem of solving a linear system Ax = b when A is nearly sym-

metric and when the system is preconditioned by a symmetric positive definite matrix

M. In the symmetric case, one can recover symmetry by using M-inner products in the

conjugate gradient (CG) algorithm. This idea can also be used in the nonsymmetric

case, and near symmetry can be preserved similarly. Like CG, the new algorithms are

mathematically equivalent to sprit preconditioning, but do not require M to be fac-

tored. Better robustness in a specific sense can also be observed. When combined with

truncated versions of iterative methods, tests show that this is more effective than the

common practice of forfeiting near-symmetry altogether.

1 Introduction

Consider the solution of the linear system

Ax = b (1)
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by a preconditioned Krylov subspace method. Assume at first that A is symmetric positive

definite (SPD) and let M be an SPD matrix that is a preconditioner for the matrix A. Then

one possibility is to solve either the left-preconditioned system

M-lAx = M-lb (2)

or the right-preconditioned system

AM-lu = b, x = M-au . (3)

Both of these systems have lost their symmetry. A remedy exists when the preconditioner

M is available in factored form, e.g., as an incomplete Choleski fadtorization,

M = LL T

in which case a simple way to preserve symmetry is to 'split' the preconditioner between left

and right, i.e., we could solve

L-1AL-Tu= L-lb, x= L-Tu , (4)

which involves a symmetric positive definite matrix. This can also be done when M can

be factored as M = M x/_ × M 1/2. Unfortunately, the requirement that M be available in

factored forms is often too stringent.

However, this remedy is not required. As is well-known, we can preserve symmetry by

using a different inner product. Specifically, we observe that M-1A is self-adjoint for the

M-inner product,

(x,y)M = (Mx, y) = (x, My)

since we have

(M-1Ax,y)M = (Ax, y)= (x, Ay)= (x,M(M-IA)y)= (x,M-IAy)M •

If we rewrite the CG-algorithm for this new inner product, denoting by rj = b - Axj the

original residual and by z3 = M-lrj the residual for the preconditioned system, we would

obtain the following algorithm, see, e.g., [4].

Algorithm 1.1 Preconditioned Conjugate Gradient

1. Start: Computer 0= b- Axo; Zo= M-Iro; and po = zo.

2. Iterate: /%r j = 0, 1..... until convergence do,

(a) a/ = (r_,zj)/(Apj,pj)

(b) a"j+ 1 -_ Xj + ojp g

(C) rj+ I = r 3 -- ajAp_
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(d) zj+ 1 = M-lrj+l

(e) = ("j+l, zj+,)/("j, :j)

(f) pj+l = zj+l + 3 pj

Note that even though M-inner products are used, we do not need to multiply by M which

may not be available explicitly; we only need to solve linear systems with the matrix co-

efficient M. It can also be seen that with a change of variables, the iterates produced by

this algorithm are identical to both those of CG with split preconditioning, and CG with

right-preconditioning using the M-l-inner product. All three of these algorithms are thus
equivalent.

The question we now raise is the following. When A is only nearly symmetric, it is

often the case that there exists a preconditioner M which is SPD. In this situation, the use

of either of the forms (2) or (3) is just as unsatisfactory as in the fully symmetric case.

Indeed, whatever degree of symmetry was available in A is now entirely lost. Although

the above remedy based on M-inner products is always used in the symmetric case, it is

rather surprising that this problem is seldom ever mentioned in the literature for the nearly

symmetric case. In the nonsymmetric case, when M exists in factored form, some form of

balancing can also be achieved by splitting the preconditioner from left and right. However,

there does not seem to have been much work done in exploiting M-inner products even when

M is not available in factored form. This dichotomy between the treatment of the symmetric

and the nonsymmetric cases is what motivated this study.

Ashby el. al. have fully considered the case of using alternate inner products when the

matrix A is symmetric. Work of which we are aware that consider the use of alternate inner

products when A is near-symmetric are Young and Jea [9] and Meyer [5]. In the latter, the
ATM-IA inner product (with M SPD) is used with ORTHOMIN and ORTHODIR.

This paper is organized as follows. In Section 2, it is shown how alternative inner products
may be used to preserve symmetry in GMRES. Section 3 considers the use of truncated

iterative methods when the preconditioned system is close to being symmetric. This has

been hypothesized by many authors, for example, Axelsson [2] and Meyer [5]. In Section 4 we

consider the symmetrically preconditioned Bi-CG algorithm. Section 5 tests these algorithms

numerically using a Navier-Stokes problem parameterized by the Reynolds number, and thus

nearness to symmetry. We conclude this paper in Section 6.

2 Symmetric preconditioning in GMRES

When A is nearly symmetric, split preconditioning may be used to preserve the original

degree of symmetry. Alternatively, left-preconditioning with the M-inner product, or right-
preconditioning with the M-l-inner product may be used. These latter two alternatives

will be developed for the Arnoldi process, and used as the basis of 'symmetric' precondi-

tioned versions of GMRES. Like C(;, it will be shown that these symmetric versions are

mathematically equivalent to split preconditioning, but do not require the preconditioner to



be symmetrically factored. We begin by exploring the options and implementation issues

associated with left symmetric preconditioning.

2.1 Left symmetric preconditioning

The GMRES algorithm is based on the Arnoldi process. Without preconditioning, the

Arnoldi algorithm based on the classical Gram-Schmidt process is as follows.

Algorithm 2.1 Arnoldi-Classical Gram-Schmidt

1. Choose a vector v I of norm 1.

2. For j = 1,2, .... m do:

3. z = Avj

4. Compute h 0 = (z,vi) for i = 1,2,...,j

5. z = z - E =l hijv,
6. hj+l,j = [tzl]:

7. If hj+l,j = 0 then Stop.

8. vj+! = z/hj+l,3
9. EndDo

Consider here the case when A is left-preconditioned, i.e., the matrix A involved in the

algorithm is to be replaced by B = M-1A, where M is some preconditioner, which we

assume to be SPD. We wish to define a procedure to implement the above algorithm for the

matrix B = M -1 A, using M-inner products, and if possible, avoid additional matrix-vector

products, e.g., with M. Once this is accomplished, we will define the corresponding GMRES

procedure.
In the preconditioned case, it is customary to define the intermediate vectors in the

product z = M-1Avj as
wj = Avj , (5)

which is then preconditioned to get

z3 = M-lw3 . (6)

We now reformulate the operations of the above algorithm for B = M -i A, with the M-inner

product. Only the computation of the inner products changes. In the classical Gram-Schmidt

formulation, we would first compute the scalars h,3 in Line 4 of Algorithm 2.1,

hlj = (z3,1,i) M = (Mz3,vi) = (w:,t,i) , i = 1.... ,j. (7)

Then we would modify the vector zj to obtain the next Arnoldi vector (before normalization),

_j = zj - ___hijv. i •
i=1

(s)



To complete the orthonormalization step we must normalize the final *;i" Because of the
M-orthogonality of _.j versus all previous vi's we observe that

(_-j, _j)M = (zj, _'j)M = (M-lwj, £'j)M = (wj, _.j) . (9)

Thus, the desired M-norm can be computed according to (9) and then computing

hj+l,j = (z.j, wj) 1/2 and vj+l = _.j/hj+l,j. (10)

One potentially serious difficulty with the above procedure is that the inner product
(_j, k_,)M as computed by (9) may be negative in the presence of round-off. There are two

remedies. First, we can compute this M-norm explicitly at the expense of an additional
matrix-vector multiplication with M, i.e., from

(_'j, 33)M = (M_._,_.j) .

As was pointed out earlier, this is undesirable, since the operator M is often not available

explicitly. Indeed in many cases, only the preconditioning operation M -1 is available from a

sequence of operations, as is the case for multigrid preconditioning. Another difficulty with

computing hij with (7) is that it is not immediately amenable to a modified Gram-Schmidt

implementation. Indeed, consider the first step of a hypothetical modified Gram-Schmidt

step, which consists of M-orthonormalizing z against vl,

hil = (z, vl) M , z = z - hilV 1

As was observed, the inner product (z, th) M is equal to (w,v I which is computable. Now

we need MS. to compute (z - hiavl, t,i) M in the modified Gram-Schmidt process. However,

no such vector is available, and we can only compute the (z, vi) M of classical Gram-Schmidt.

An alternative is to save the set of vectors Mr, i (again, not computed by multiplying by

M) which would allow us to accumulate inexpensively both the vector _;j and the vector _bj
via the relation

j

_bj =_ m_:j = toj - Z hijM_i ,
i=1

which is obtained from (8). Now the inner product (_3, ,53)M is given by

('_, Sj)M = ( M-"bj, M-'tbj)M = (M-lff,j,,Z,j) .

In this form, this inner product is guaranteed to be nonnegative as desired. This leads to
the following algorithm.

Algorithm 2.2 Arnoldi-Classical Gram-Schmidt and M-inner products

I. Choose a vector w 1 such that _'1 = m-ltt'l has M-norm I.
2. _brj = 1,2 .... ,rn do:

3. u, = At,j



4. Computeh,j = (w, vi) for i = 1,2,... ,j

5. (v = w- _S how,t=l

6. z = M-iCy •

7. hj+xO = (z, d,)l/_. If h.i+x,j = 0 then Stop.

8. wj+l = _v/hs+l,S

9. vj+l = z/hj+lj

10. EndDo

As is noted, the above algorithm requires that we save two sets of vectors: the vj's and

the w,'s. The vi's form the needed Arnoldi basis, and the wi's are required when computing

the vector tbs in Line 5. If we do save these two sets of vectors we can also now easily

formulate the algorithm with the modified Gram-Schmidt version of the Arnoldi procedure.

Algorithm 2.3 Arnoldi-Modified Gram-Schmidt and M-inner products

i. Choose a vector w 1 such that 131 : M-lwl has M-norm 1.

2. For j = 1,2,...,m do:

3. w = Avj
4. For i = 1,...,j do:

5. h,j = (w, v,)
6. w = w - hijw i

7. EndDo

8. z = M-lw

9. hi+l, i = (z,w)l/_. If hi+l, i = 0 then Stop.

= u,lh +lI0. ws+ l s ,J

I1. 'uj+1 = z/hs+l,3
12. EndDo

2.2 Right symmetric preconditioning

The matrix AM -I is self-adjoint with the M-l-inner product. The situation for right-

preconditioning with this inner product is much simpler, mainly because M-lz is available

when z needs to be normalized in the M -1 norm. However, M-lz is normally computed at

the next iteration in the standard Arnoldi algorithm; a slight reorganization of the Arnoldi-

Modified Gram-Schmidt algorithm yields the following.

Algorithm 2.4 Arnoldi-Modffied Gram-Schmidt and M -I-inner products

1. Choose a vector u I of M-l-norm I, compute u'l = m-lvl

2. For j = l,'2, . . . , m do:

3. z = Awj



4. For i= 1,...,j do:

5. h,_ = (z, w,)

6. z = z - hi_v i
7. EndDo

8. w -= M-lz

9. hi+l, j = (z, w)l/2. If h:+l, j = 0 then Stop.

10. wj+ 1 : w/hi+l, J

11. vj+ 1 ----z/hi+l, J
12. EndDo

Note that the preconditioned vector is computed in Line 8, while in the standard algo-

rithm it is computed before Line 3. Again, both the v's and the w's need to be saved, where

wj = M-lvj in this case.

The additional storage of the w's, however, makes this algorithm naturally 'flexible,' i.e.,

it accommodates the situation where M varies at each step as when M-iv is the result

of some unspecified computation. If M -1 is not a constant operator, then a basis for the

right-preconditioned Krylov subspace cannot be constructed from the v's alone. However,

the vectors wj = MTlvj do form a basis for this subspace, where M_ 1 denotes the precon-

ditioning operation at the j-th step. The use of this extra set of vectors is exactly how the

standard flexible variant of GMRES is implemented [6].

2.3 Using M-inner products in GMRES

The vectors v i form an orthonormal basis of the Krylov subspace. In the following we

denote by Vm = Iv1,..., vm] the matrix whose column vectors are the vectors v i produced by

the Arnoldi-Modified Gram-Schmidt algorithm with M-inner products (Algorithm 2.3). A

similar notation will be used for the matrix W m. We also denote by/4,_ the (rn + 1) x rn upper

Hessenberg matrix whose nonzero entries h,j are defined by the algorithm. H m denotes the

top m x rn portion of/tin- These matrices satisfy a number of relations similar to the ones

obtained from using the standard Euclidean inner product.

Proposition 2.1 The following properties are satisfied by the vectors v i and w i in Algorithm
o.3..

l. M-1At'_ = t._+lH,_ ,

2. At_ = 14_+ IHm,

3. VT M i.'m = I
m

5. If.4 is ffermitian then Hm is Herrnitian and tridiagonal.



Consider now the implementation of a GMRES procedure based on the orthogonalization

process of Algorithm 2.3. Since we are using M-inner products we should be able to minimize
the M-norm of the residual vectors M-lb- M -1Ax over all vectors of the affine subspace

x0 + Km in which,

h'm = span{zo, M-' Azo,.. ., (M-' A)m-'zo} (11)

where z0 = M-'ro, and ro = b- Axo. Define _ = tlr011Mand el as the first coordinate vector.

Then we have,

b- Ax = b- A(xo + Vmy)

= ro - AVmy

= ro- Wm+l[tmy

= Wm+_(/3_, - fImy).

Therefore we have the equality,

IIM-'(b- Ax)ll_ = [[M-'Wm+a(fle, - B y)II 
= (M-lWm+l(/3el - flay), _/_/%+l(/_el -- Hmy))

= (W T M-'Wm+,(_e,- [fmy),(/3e , - [-I_y))
m+l

-- Ilfle,-/?myll_ • (12)

A result of the equality (12) is that we can minimize the M-norm of the (preconditioned)

residual vector M-l(b - Ax) by simply minimizing the 2-norm of/3el-/4mY as in the standard

GMRES algorithm.

Algorithm 2.5 Left-preconditioned GMRES with M-inner products

O. Compute r o = b - Ax o and z = M-lro

1. Compute _ = (r 0,z)1/2; v I = z//3 and Wl = %/3

2. For j = 1,2,...,m do:

3. w = Avj

4. Fbri= 1,...,j do:

5. hi3 = (u,, vi)

6. w = w-- htju' _

7. EndDo

8. Z = M-lw •

9. hi+l, j = (z, wp/2. If h1+l, 3 = 0 then Stop.

I0. w i+1 = w/hj+l,_

11. t'j+l = z/h;+l,;
12. EndDo

13. Compute the minimizer Ym of ll3e, - Hmyl[2

14. Compute the approximate solution x,n = Xo + t'_y,,

1,5. If satisfied Stop: else set x 0 = xm and goto I.

$



An equality similar to (12) can be shown for the right-preconditioned case with M -1-

inner products. We can summarize with the following theorem, which we state without

proof.

Theorem 2.1 The approximate solution Xm obtained from the left-preconditioned GMRES

algorithm with M-inner products minimizes the residual M-norm IIM-l(b - Ax)IIM over all

vectors of the affine subspace x o + K m in which

h" m = span{zo, M-1Azo,...,(M-'A)m-'zo} (13)

where z o = M -1 r o. Also, the approximate solution x m obtained from the right-preconditioned

GMRES algorithm with M -1-inner products minimizes the residual M -_-norm lib- AxlIM-,
over the same affine subspace.

2.4 Equivalence of the algorithms

We can show that both left and right symmetric preconditioning are mathematically equiv-

alent to split preconditioning. In the latter case, M must be factored into M = LL T and we
solve

L-I AL-Tu = L-lb, x = L-Tu. (14)

Denoting by B the preconditioned matrix B = L-1AL -T, the GMRES procedure applied to

the above system for the u variable, minimizes the residual norm,

IIL-'(b-AL-Tu)II 

over all vectors u in the space u0 + K (_) with
m

in which

K(_') = span{÷o,B÷o,..., Bin-'(0}

÷o = L-t( b- AL-Tuo)= L-'(b- Axo)= L-'r o.

Note that tile variables u and x are related by x = L-Tu.

minimizes

IIL-_(b - Ax)ll _

over all x in the space x 0 + K(_) with
m

As a result,, this procedure

(15)

We now make the following observation. For any k _> 0 we have,

L-T Bk÷ o L-T Bk L-lro (M-tA) k__ __ Z 0

h'(_:) = span{L-T?o, L-TBi'o,... L-TBm-lf-o}
772 _ *



where z 0 = M-Xro . Indeed, this can be easily proved by induction. Hence, the space K(xl is

identical with the space

h'_ _) = span{zo, M-' Azo,.. . ,(M-' A)m-Zz0}

which is nothing but (13). In noting that

tlL-l(b - Ax)ll2 = Hb- AXIIM-, = IIM-1(b - Ax)I[M (16)

we have proved the following result.

Theorem 2.2 Let M = LL v. Then the approximate solution obtained by GMRES applied

to the split preconditioned system (14) is identical with that obtained from the GMRES

algorithm for the left preconditioned system (2) using the M-inner product.

Again, the same statement can be made about right-preconditioning. All that must be

noticed is that the same minimization (16) is taking place, and that the minimization is over

the same subspace in each of the left, right, and split preconditioning options [7, Sec. 9.3.4].

We emphasize in particular that it is the split preconditioned residual that is minimized in

all three algorithms.

3 Truncated iterative methods

Truncated iterative methods are an alternative to restarting, when the number of steps re-

quired for convergence is large and the computation and storage of the Krylov basis becomes

excessive. When A is exactly symmetric, a three-term recurrence governs the vectors in the

Arnoldi process, and it is only necessary to orthogonalize the current Arnoldi vector against

the previous two vectors. If A is nearly symmetric, an incomplete orthogonalization against

a small number of previous vectors may be advantageous over restarted methods. The ad-

vantage here may offset the cost of maintaining the extra set of vectors to maintain the

initial degree of symmetry. The incomplete Arnoldi procedure outlined below stores only

the previous k Arnoldi vectors, and orthogonalizes the new vectors against them. It differs

from the full Arnoldi procedure only in Line 4, which would normally be a loop from 1 to j.

It can be considered to be the full Arnoldi procedure when k is set to infinity.

Algorithm 3.1 Incomplete Arnoldi Procedure

1. Choose a vector t, 1 of norm I.

2. For j = 1,9 ,...,171 do

,3. w = A t,j

4. Fbri=max{1,j-k+ 1} .... , j do

5. h,j = (._,, _,,)

lO



6. w ---- w - hijv i

7. EndDo

s. h,+,,j= IIzll_
9. H hi+l, j = 0 then Stop.

10. vj+ l = w/hj+l, _
11. EndDo

The truncated version of GMRES uses this incomplete Arnoldi procedure and is called

Quasi-GMRES [3]. The practical implementation of this algorithm allows the solution to be

updated at each iteration, and is thus called a 'direct' version, or DQGMRES [8].

To suggest that truncated iterative methods may be effective in cases of near symmetry,

we study the asymptotic behavior of the iterates of DQGMRES as the coefficient matrix A

varies from nonsymmetry to (skew) symmetry. We first decompose A as

A=S+B

in which S is symmetric or skew symmetric, and set

We will first establish asymptotic relations among the variables in the incomplete and full

Arnoldi procedures. Then we will apply the incomplete procedure to A, and the full proce-

dure to S, using the superscripts I and F to distinguish between the variables appearing in

the two procedures. (Note that since S is (skew) symmetric, the full procedure on S is the

same as the incomplete procedure with k _> 2.)

Moreover, if we denote the degree of the minimal polynomial of VlF with respect to S by

u, then h F = 0 and h r ¢ 0 for 1 < j < u. In the proof of the following lemma, we
u+l,u 3+1, 3 --

also use 7:,t and br to denote the vectors w z and w F obtained at the end of Line 7 in the
3 ./

incomplete and complete Arnoldi procedures.

Lemma 3.1 Assume the truncation parameter k > 2. lf v_ = t,_ + O(e), then

ht = h e + O(e) _,Z= vr + O(e)
U 13 ' 3 3

where 1 <_j <u and max{1,j-k+l} <i<j+l.

Proof. The proof is by induction on the index j. By Lines 5 and 6 of the Arnoldi procedure,

hl, = (Av(,v() _,'_= Av; - h, . , h'_,= IIq'll2, "Vllt 1 , ,

we [lave

hi, = (sv[, v[)+ o(_) = hfi + o(_),

,_,_,= s,,[ - h[_,,[+ 0(_) = ,_,_+ 0(_),

ll



and hencethe lemmaholdsfor j = 1. Assume that the lemma has been proved for j < 30 < v.

On that hypothesis, we prove it for j = J0. By Line 10 of the Arnoldi procedure,

U! "I I
3o = V Jo / h jo,jo-1

which yields that

_F + o(_) _F
V ! ---- 30 __ 30

so hF + O(e) hF
30 ,J0 - l 30,J0 - 1

+ o(c) = _,_+ 0(_)

by the induction hypothesis. Therefore

w I = Art = Svf + O(e) = w F + O(C)
30 30

for the w I and w F in Line 3 of the Arnoldi procedures, lJsing another induction on the index

i in Lines 5 and 6, and the induction hypothesis on j and, in the mean time, noting that

hF =0for 1 <i<j0-9 we have
13 o _'

h! = hr + O(c)
t3o 230

for max{1,j0-k+l} _<i_<j0and

_I = bF + O(_)
jo+l 3o+1

From the last equation,

h I ,bl bF h F- I]',0+ll[2 = O(e) + O(c)30 + 1,3o 3o + 1,3o

and then the induction step is complete. QED.

We now turn to the DQGMRES algorithm. Consider the linear system

SX _ b

and denote by x c and xQ the approximate solutions by the GMRES and DQGMRES algo-

rithms, respectively. Let # be the degree of the minimal polynomial of the vector b - Sx o

with respect to S. A result of the lemma can be stated as follows.

Theorem 3.1 Given the samr initial guess x o to GMRES and DQGMRES with k >_ 2, then

at any given step m with 1 <_ rn <_ I_,

z2 = xC + o( c ) .
?n

Proof. By' the definitions of DQGMRES and GMRES, we have

xO = x o + dQV' ((ii:) T If' )-' (II:) Tm m m ¢_I

12



and

((:) :)-'(x_=xo+3Zv_ B rB R _,

where OQ = lib- Axoll2 and 13a = lib- Sxoll=. Since

vii= -_61(b- Axo) = _(b- Sxo) + O(s) = vF1 + O(s)

we have by the lemma,

/_t = H_ + O(_) V _ = V F + O(c)
m 77l ' Trt m

and therefore the desired equation holds. QED.

If we let x a be the exact solution to Ax = b and x s be the exact solution to Sx = b, then

it is obvious that x A = x s + 0(¢). Since, on the other hand, x a = Xs we immediately have

the following corollary.

Corollary 3.1 For any initial guess x o and any k >_ 2,

xQ = Xa + O(s).
p.

The corollary suggests that we may use DQGMRES with small k when A is nearly

symmetric or nearly skew symmetric.

4 Symmetric preconditioning in Bi-CG

The Bi-CG algorithm is based on Lanczos biorthogonalization. Both left-symmetric and

right-symmetric preconditioning are relatively straightforward, and no extra vectors are re-

quired. For reference, Algorithm 4.1 gives the right-preconditioned Bi-CG algorithm with

preconditioner M. The symmetric right-preconditioned Bi-CG algorithm (right-preconditioned

Bi-CG using M-l-inner products) is developed immediately afterward.

Algorithm 4.1 Right-preconditioned Bi-CG

I. Compute r o = b - Axo. Choose r_) such that (ro, r_)) # O.

2. Set P0 = r0, Po = r0

3. bbr j = 0, 1,.--, until convergence Do:

4. oj = (rj,r;)/(AM-lpj,p'j)

5. xj+ l = ,rj -4-ctjM-tpj

6. rj+ 1 = rj - (_jAM-lp_

" r, - ajM-TATp_7. rj+ 1 =

8. i_j= (rj+,,,';+,)/(rj,r,)
9. P;+l = rj+l + 3;pj

1o. p;+, = r;+, + _:p;
1 I. EndDo
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Note in Line 7 of the abovealgorithm that the preconditionedcoefficientmatrix of the dual

system is (AM -a )T = M-TAT, i.e., the dual residual r" is the residual of

M-TATx * = b°,

which is a left-preconditioned version of some linear system with A T.

To develop the symmetric right-preconditioned Bi-CG, M-l-inner products are used in

Algorithm 4.1 above. However, the preconditioned coefficient matrix of the dual system

must be the adjoint of AM -l in the M -1 inner product. This is ATM -1 as shown by

( AM-Ix, Y)M-' =- (M-1AM-Ix, Y) = (x, M-IATM-ly) = (x, ATM-Iy)M-1.

The dual system thus involves the coefficient matrix ATM -1. Algorithm 4.2 gives the sym-

metric right-preconditioned Bi-CG algorithm with preconditioner M.

Algorithm 4.2 Right-preconditioned Bi-CG with M -1-inner products

,

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Compute r o = b- Ax o. Choose r o such that (M-Iro, ro) ¢ O.

Set Po = M-lro, P_ = M-Xro"

For j = 0, 1,-.., until convergence Do:

a: = (M-lr:,r_) (Ap_,p_)

X3+ 1 = X3 -JV o_jpj

rs+ l = r: - chAps

" = r, - cbArp_r3+l 3

,L_j = (M-lrj+l, ry+l )/(M -I rj, r;)

Ps+i = M-lr:+l + 3¢Pj

py+, = + '3jpy
EndDo

Like GMRES, both left and right symmetric preconditioned versions of Bi-CG are equiv-

alent to the split preconditioned version, and this can be shown by a change of variables.

However, in both left and right symmetric preconditioned versions, the exact, rather than

the split preconditioned residual is available.

The unpreconditioned Bi-CG algorithm cannot have a ,serious breakdown if A is SPD and

r 0 is chosen to be r 0. This is because r*j = rj and PS" = pj for allj and the vectors Apj,p'j
never become orthogonal. In fact, the cosine

A is(Apj,p*j) (PJ,P3) IlpjII

IIApjlIIIpylI IIpjIIIIpyllIIApsll

can be bounded below by the reciprocal of the condition number of A.

14



Similarly, in the symmetric right-preconditioned version of Bi-CG, if both A and M are

SPD, and r_ = r0, then r'j = rj and Pj* = P3 for all j, and

(Ap3, p;)

IIM- r llllr ll

>_ cond-l(A)

>_ cond-l(M).

We measure the cosines rather than the quantities (Apj,p_) and (M-lr¢, r r) because the
3

p and r vectors have magnitudes going to 0 as the algorithms progress. Recall that in the

case when (M-lrj, r)) = 0 and rj = 0, we have a lucky breakdown.

For the case of regular right- or left-preconditioning, or if r; ¢ r0 in the symmetrically

preconditioned cases, then no such lower bounds as the above exist, and the algorithms are
liable to break down.

When A is near-symmetric, it is our hypothesis that the probability of breakdown is

lower in the symmetrically preconditioned cases, and this will be shown by experiment in
the next section.
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5 Numerical Experiments

Section 5.1 tests the idea of using symmetric preconditionings with truncated iterative meth-

ods. Section 5.2 tests the breakdown behavior of symmetrically preconditioned Bi-CG.

5.1 Truncated iterative methods

To test the idea of using symmetric preconditionings with truncated iterative methods for

nearly symmetric systems, we selected a standard fluid flow problem where the degree of

symmetry in the matrices is parameterized by the Reynolds number. The flow problem

is the two-dimensional square-lid driven cavity, and was discretized by the Galerkin Finite

Element method. Rectangular elements were used, with biquadratic basis functions for

velocities, and linear discontinuous basis functions for pressure. We considered a segregated

solution method for the Navier-Stokes equations, where the velocity and pressure variables

are solved separately; the matrices arising from a fully-coupled solution method are otherwise

indefinite. In particular, we considered the expression of the conservation of momentum,

Re(u • Vu) = -Vp + V2u

where u denotes the vector of velocity variables, p denotes the pressure variable, and Re is

the Reynolds number. The boundary conditions for the driven cavity problem over the unit

square are u = (1.0) T on the top edge of the square, and u = (0, 0) T on the other three sides

and the corners. The reference pressure specified at the bottom-left corner is 0.

The matrices are the initial 3acobians at each Newton iteration, assuming a zero pressure

distribution. For convenience, however, we chose the right-hand sides of the linear systems

to be the vector of all ones. A mesh of 20 by 20 elements was used, leading to momentum

equation matrices of order 3042 and having 91204 nonzero entries. The nodes corresponding

to the boundaries were not assembled into the matrix, and the degrees of freedom were

numbered element by element. For Reynolds number 0., the matrix is SPD, and is equal to

the symmetric part of the matrices with nonzero Reynolds number.

We generated matrices with Reynolds number less than 10, which gives rise to the nearly

symmetric case. For Reynolds number 1., the degree of symmetry measured by

IIA- ATIbv
IIA+ ATIIF

has value 7.5102 × 10 -4 and this measure increases linearly with the Reynolds number (at

least up to Re=10).

In the numerical experiments below, we show the number of matrix-vector products

consumed by GMRES(k) and DQGMRES(k) to reduce the actual residual norm to less than

10-6 of tile original residual norm, with a zero initial guess. Several values of k are used. A
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dagger (t) in the tables indicates that there wasno convergencewithin 500 matrix-vector
products. The incompleteCholeskifactorization IC(0) of the Re=0 problemwasusedasthe
preconditioner in all the problems.

For comparison,wefirst showin Table1, the resultsusingstandardright-preconditioning.
Table 2 showsthe results using right-preconditioning with M -1 inner products, or equiva-

lently, split preconditioning. In the latter case, care was taken to assure that GMRES did

not stop before the actual residual norm was within twice the tolerance. For DQGMRES,

since an accurate residual norm estimate is not available within the algorithm, the exact

residual norm was computed and used for the stopping criterion for the purpose of this com-

parison. The right-preconditioned methods have a slight advantage in this comparison (by

as many as 20 Mat-Vec's), since they directly minimize the actual residual norm, whereas

the symmetrically preconditioned methods minimize a preconditioned residual norm.

Re.

0

1

2

3

4

5

6

7

GMRES(k)

5 10 oc

232 129 59

218 126 69

233 126 70

208 126 71

214 128 72

210 128 72

214 128 73

215 129 73

DQGMRES(k)

2 3 4 5 6 7 8 9 10

76 220 105 72 92 _ 160 83 75

76 276 131 81 94 _ 97 90 79

78 391 258 82 95 t 98 94 78

87 346 232 85 95 t 99 97 79

94 345 t 88 95 477 108 98 86

192 394 _ 91 95 326 128 99 90

446 361 t 94 97 258 197 100 94

345 _ 97 99 239 229 101 96

Table 1: Mat-Vec's for convergence for right-preconditioned methods.

Re.

0

1

2

3

4

5

6

7

GMRES(k)

5 10 _o

243 119 57

243 119 67

244 120 68

244 121 69

244 122 70

244 126 70

244 127 71

243 128 71

DQGMRES(k)

2 3 4 5 6 7 8 9 10

58 58 58 58 58 58 58 58 58

75 74 74 75 74 74 74 75 75

78 78 78 79 78 78 78 78 78

88 87 87 87 87 86 86 87 87

108 95 95 95 93 91 91 93 95

l 105 103 105 100 97 96 101 104

118 111 119 108 101 101 110 117

t 131 121 139 117 104 105 121 139

Table 2: Mat-Vec's for convergence for symmetric right-preconditioned methods.

The results in Table 1 show tile irregular performance of I)QGMRES(k) for these small

values of k when the preconditioned system is not sy,mmetric. The performance is entirely
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regular in Table2, wherethe preconditionedsystem is nearsymmetric. For Reynoldsnum-
bersup to 3, the systemsaresufficiently symmetricsothat DQGMRES(2) behavesthe same
asDQGMRES with much larger k. The performance remains regular until beyond Reynolds

number 7, when the number of steps to convergence begins to become irregular, like in the

right-preconditioned case.

GMRES with either right or symmetric preconditioning does not show any marked dif-

ference in performance; apparently the symmetry of the preconditioned system is not as

essential here for this problem. However, the results do show that DQGMRES(k) with small

values of k may perform as well, in terms of number of steps, as GMRES(k) with large values

of k, particularly if near-symmetry is preserved. Since the former is much more efficient, the

combination of preserving symmetry and truncated iterative methods may result in a much

more economical method, as well as the more regular behavior shown above.

We also performed the same experiments with orthogonal projection methods, namely

the Full Orthogonalization Method (FOM) and its truncated variant, the Direct Incomplete

Orthogonalization Method (DIOM) [7]. The results were very similar to the results above,

and are not shown here. Indeed, the development of the algorithms and the theory above is
identical for these methods.

For interest, we also performed tests where an ILU(0) preconditioner was constructed for

each matrix and compared right and split preconditioning. For the near-symmetric systems

here, there was very little difference in these results compared to using IC(0) constructed

from the Re=0 case for all the matrices. Thus the deterioration in performance as the

Reynolds number increases is not entirely due to a relatively less accurate preconditioner,

but is more due to the increased nonsymmetry and non-normality of the matrices. Al-

though the eigenvalues of the preconditioned matrices are identical, their eigenvectors and

hence their degree of non-normality may change completely. Unfortunately, it is difficult to

quantitatively relate non-normality and convergence.

5.2 Breakdown behavior of Bi-CG

To test the breakdown behavior of Bi-CG, MATLAB was used to generate random matrices of

order 300 with approximately 50 percent normally distributed nonzero entries. The matrices
were adjusted so that

A + A T A - A T

A ,- 2 (ar_in + 10-'_)I + C 2 '

i.e., the symmetric part was shifted so that the lowest eigenvalue was 10 -s and then e times

the skew-symmetric part was added back. The parameter c was altered to get varying degrees

of nonsymmetry.

For each c that we tested, 100 matrices were generated, and the smallest value of the

cosines corresponding to the denominators in the algorithms were recorded. In the right-
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preconditionedcase,we recordedthe minimum of

(AM-'pj,p;) and (rj,r;)
IIAM-lPjlIIIP;II Ilrjllllr;lt

for all j, and for the symmetric right-preconditioned case, we recorded the minimum of

(Apj,p;) and (M-'rj,r;)
IIApjlIIIPylI IIM-1TjlIIIryll

for all j. The relative residual norm reduction was 10 -9 when the iterations were stopped.

The initial guesses were 0, and r 0 was set to r0. IC(0) of the symmetric part was used as

the preconditioner.

Table 3 shows the frequencies of the size of minimum cosines for the right-preconditioned

(first row of each pair of rows) and the symmetrically-preconditioned cases (second row of

each pair of rows). For example, all 100 minimum cosines were between 10 -3 and 3 x 10 -3 in

the symmetrically-preconditioned case. The average number of Bi-CG steps and the average

minimum cosine is also shown. The last column, labeled 'better', shows the number of times

that the minimum cosine was higher in the improved algorithm.

The Table shows that the right-preconditioned algorithm can produce much smaller

cosines, indicating a greater probability for breakdown. The difference between the algo-

rithms is less as the degree of nonsymmetry is increased. For e = 0.1, there is almost no

difference in the breakdown behavior of the algorithms. The Table shows that the number of

Bi-CG steps is not significantly reduced in the new algorithm, nor is the avera9e minimum

cosine of the modified algorithm significantly increased. It is the probability that a small

cosine is not encountered that is better.

It is important to note that this behavior only applies when r 0 is set to r0. When r 0 is

chosen randomly, there is no gain in the symmetrically-preconditioned algorithm, as shown

in Table 4.

Table 5 shows the number of steps and the minimum cosines for the two algorithms

applied to the driven cavity problem described in Section 5.1 above. Figure 1 shows a plot of

the minimum cosines as the two algorithms progress for the Re = 1 problem. Note that the

minimum cosines are higher and much smoother in the symmetrically-preconditioned case.

In the Re = 7 problem, the cosines are still higher, but the smoothness is lost.

6 Conclusions

When solving linear systems with matrices that are very close to being symmetric, this paper

has shown that it is possible to improve upon the standard practice of using a (nonsymmetric)

preconditioner for that matrix along with a left- or right-preconditioned iterative method.

The original degree of symmetry may be maintained by using a symmetric preconditioner

and an alternate inner product (or split preconditioning, if appropriate). By combining this
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_¢ steps 3e-6 le-5 3e-5 le-4 3e-4 le-3 3e-3 le-2 3e-2
rll_) 3e-5 le-4 3e-4 le-3 3e-3 le-2 3e-2 le-1le-5IIa+arllr

0.000 32.51 1 4 9 19 26 30

(0.) 31.77 100

11

0.005 30.57 1 2 8 16 34 34 5

(2.3e-3) 29.97 2 1 82 15

0.010 29.27 1 0 3 2 10 29 32 20 3

(4.5e-3) 28.94 1 2 1 6 88 2

0.050 27.53 1 3 8 13 36 31 8

(2.3e-2) 27.32 2 3 7 18 39 26

0.100 26.38 1 11 18 39 27 4

(4.5e-2) 26.42 3 4 15 40 27 11

average better

x10-3

1.35

1.87 74

3.51

8.54 92

7.25

15.79 77

4.15

9.47 69

0.88

1.26 57

Table 3: Frequencies of minimum cosines for right-preconditioned (first row of each pair of

rows) and symmetrically-preconditioned (second row of each pair of rows) Bi-CG.

c steps 3e-6 le-5 3e-5 le-4 3e-4 le-3 3e-3 le-2 3e-2

le-5 3e-5 le-4 3e-4 le-3 3e-3 le-2 3e-2 le-1

0.000 33.05 1 4 ll 24 26 30 4

32.54 1 1 3 11 24 56 4

average better

× 10-:*

0.92

1.31 63

Table 4: Frequencies of minimum cosines when r 0 is chosen randomly.
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Re.

0

1

2

3

4

5

6

7

Bi-CG steps

right

70 62

71 68

74 72

73 72

77 72

80 75

80 78

80 80

min cosines

symm right symm

1.52e-4 1.45e-1

1.08e-4 6.73e-3

2.44e-4 5.12e-4

2.02e-4 9.07e-3

1.93e-5 6.52e-3

5.54e-5 5.19e-4

1.91e-4 4.30e-5

1.87e-4 1.02e-3

Table 5: Steps and minimum cosines for the driven cavity problem.

10 °

10-1
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10-_ _ t

10 -3

10 o lO
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I_' I % _ I I
1% --

Ii I t_l II

/

I

I

I 0 I60 /0

Figure 1: Minimum cosines in right-preconditioned Bi-CG (solid line) and symmetrically-

preconditioned Bi-CG (dashed line) for the Re = 1 problem.
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idea with truncated iterative methods,solution proceduresthat convergemore quickly and
require lessstoragearedeveloped.The truncated methodsalsoseemto becomemorerobust
with the truncation parameter k when near-symmetry is maintained. The Bi-CG algorithm

also seems to be more robust with respect to serious breakdown when near-symmetry is
maintained.
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